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A numerical investigation is conducted into the flow of a dilute suspension of rigid rod- 
like particles between parallel flat plates, driven by a uniform pressure gradient. The 
particles are assumed to be small relative to lengthscales of the flow with the effect that 
particle orientations evolve according to the local velocity gradient; the particles are 
also assumed to be small in an absolute sense, with the consequence that Brownian 
motions are of consequence. The calculations are performed using a novel approach, 
with a theoretical basis that has been developed previously in a companion paper (Szeri 
& Leal 1992). The new approach permits one to solve flow problems of microstructured 
fluids (such as suspensions, liquid crystals, polymer solutions and melts) without ‘pre- 
averaging’ or closure approximations. In the present work, the new approach is used 
to expose previously unknown pathological, non-physical predictions in various 
constitutive models derived using closure approximations. This appears to have passed 
unnoticed in prior work. In addition, the new approach is shown to possess several 
computational advantages. The determination of the orientation distribution of 
particles is self-adaptive; this leads, in effect, to a very efficient solution of the 
associated Smoluchowski (or Fokker-Planck) equation. Moreover, the new approach 
is highly suited to parallel (and vector) implementation on modern computers. These 
issues are explored in detail in the context of the example flow. 

1. Introduction 
In this paper, we investigate a specific flow of a dilute suspension of rigid, rod-like 

particles which has a spatially inhomogeneous velocity field, is time-dependent and 
involves Brownian motions of the particles. The suspension is only one example of the 
general class of microstructured fluids that includes polymer solutions and melts, liquid 
crystals, colloidal dispersions, etc. The primary goal of the present work is to 
implement a new technique for the solution of flow problems of these materials, which 
has a theoretical basis that was carefully developed in a companion paper, Szeri & Leal 
(1992, hereinafter referred to as I). As our technique does not require ‘pre-averaging’ 
or closure approximations, we have an opportunity to test some commonly made 
closure approximations used to develop constitutive models for this type of material. 
Our technique exposes previously unknown non-physical behaviour in these models. 

A secondary goal of the present work is to evaluate this first numerical 
implementation of our technique. The two principal features on which we focus are (i) 
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the self-adaptive nature of the discretization in which the evolving microstructure is 
followed, and (ii) the extent to which our reformulation of the governing equations 
allows us to take advantage of parallel (and vector) computation. In the evaluation of 
the algorithm, we observe that our implementation of the new technique requires 1-2 
orders of magnitude fewer unknowns than a recent comparable calculation by Kamal 
& Mute1 (1989), which uses a standard non-self-adaptive technique to track the 
evolving microstructure. In addition, our implementation of the new technique has a 
parallel efficiency (speed-up/number of processors) of nearly 70 %, as a consequence 
of the fact that the microstructure at each material point of interest can be updated 
simultaneously and independently by a dedicated processor (each operating in vector 
mode). 

We focus on dilute suspensions of rigid rod-like particles. The particles are assumed 
to be small relative to lengthscales of the flow ; in addition, we assume that the particles 
follow the same paths through the flow as fluid particles. Hence, the influence of the 
flow on the orientation of a particle is felt through the local velocity gradient tensor of 
the flow. As well as the influence of the flow on the particles, we assume that rotational 
Brownian motions of the particles are important. Mathematically, these phenomena 
are described by the evolution equations for the local orientation distribution function 
of a dilute suspension of rigid, rod-like (axisymmetric) particles : 

d 
-R dt 

= S2- R +  G[E* R- E :  RRR] - D, V(l~gf),  (1.1a) 

Z+V.(fR) = 0. 
a t  

(1.1b) 

For background on (1. l), the interested reader may consult Larson (1988) or Bird et 
al. (1987), among other works. In (1.1 a), the orientation of a particle, specified by a 
vector R parallel to the axis of symmetry, evolves according to the local vorticity tensor 
S2 and rate-of-strain tensor E. The shape factor G accounts for the inefficiency of 
rotation of particles of finite aspect ratio in straining flows; G lies normally between the 
extremes 0 (spherical particle) and 1 (infinite-aspect-ratio fibre). The Brownian motion 
of the particle is modelled as a diffusive process by the last term in (1.1 a),  that involves 
the Brownian diffusivity D, and the orientation distribution function f. The gradient 
in this term is an operator in orientation space. The orientation distribution function 
f evolves according to the Fokker-Planck equation (1.1 b), which describes the 
conservation of probability in orientation space. 

In a realistic flow problem in which the velocity gradient tensor is time-dependent 
and spatially inhomogeneous, the local orientation distribution function must be found 
from (1.1) throughout the flow field. In addition, the state of stress throughout the 
suspension depends on the local orientation distribution of particles through the 
second and fourth moments of the distribution function, i.e. 

(RR)(t) = (R 0 R)AR, t)d2R, s 
s (RRRR) (t) = (R 0 R 0 R @ R)AR, t)d2R. 

It is worth emphasizing that one requires only the relevant moments of the local 
orientation distribution function rather than the local orientation distribution function 
itself when computing a flow. This practical realization has led to a number of attempts 
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to compute moments of distribution functions directly. However, in suspensions of 
rigid rod-like particles, and in most other types of microstructured fluids, one must 
make strong approximations in order to obtain a closed set of evolution equations for 
the moment of interest. The development of direct moment evolution equations, 
closure approximations, and the shortcomings of this approach are discussed at length 
in I. 

The major shortcomings of the standard approach to solving flow problems of 
microstructured fluids led us to consider a new approach with a basis more closely 
related to the physics of the problem than the approach of making a closure 
approximation. The details of the theoretical development are given in I. The basic idea 
is to reformulate the equations for the orientation distribution function of a material 
point in a way that is Lagrangian in orientation space (in the case of rigid orientable 
particles). Mathematically, the Lagrangian and Eulerian forms of the distribution 
function for a material point of fixed identity are related by the definition 

f * ( t ;  Ro) =At, R)IR=R(t.R,). 

Here, @(t ; R,) is the solution of the associated microdynamical equation (1.1 a)  with 
initial condition R,. Hence, the Lagrangian form of the distribution function tracks the 
evolving orientation distribution associated with a given particle and not with a given 
orientation. 

From the conservation statement for the conventional Eulerian form of the 
distribution function (1.1 b), we derived in I the conservation statement for the new, 
Lagrangian form. This equation is 

Moments may be recast in the reference configuration, by taking the point of view that 
(1.2) is really an expression of a coordinate transformation for each material point; 
hence for an initially isotropic orientation distribution (AR, 0) = 1/4n), we have 

( R R ) ( t )  = f*( t ;R,)R @ Rd2R s 
= - S l i ( i ; R n ) ~ R ( t ; R , ) d z R o .  1 

471. 

This same technique was used by Kuzuu & Doi (1980) and earlier by Okagawa, Cox 
& Mason (1973) in studies of suspension mechanics without Brownian motions. The 
same idea works well when Brownian motions are included, as in the present work. 
This equation, and the similar expression for the fourth moment, turn out to be 
extremely efficient expressions for the computation of the moments we require. In 
addition, discretization of the reference configuration (which is known) determines the 
order of accuracy of approximation of the integral. The second use of (1.2) is in the 
computation of the Brownian term of (1.1 a). In I, we show that (1.2) may be used to 
rewrite (1.1 a)  as a single partial differential equation for the map between reference 
(the expression for the diffusive term of which applies when the initial orientation 
distribution is isotropic) and deformed configurations @(t ; R,) : 

(1.3) 
1 [ det (V, R J .  

a -  " " "  
- R = Q . R + G [ E . R -  E :  RRRI- D,det (V,R)V 
at 
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In a numerical implementation of this technique, we solve for a discretized form of the 
coordinate map R(t ; R J .  This is mathematically equivalent to integration of the 
Fokker-Planck equation. However, numerically, the technique we have described has 
important advantages. 

Our reformulation of the governing equations allows for the determination of the 
discretized form of the coordinate map in a self-adaptive way. We simply release a set 
of particles with the initial distribution of orientations (which must be known), and let 
their orientations evolve in the flow in a natural way, according to (1.3). For this 
reason, we shall only require a relatively coarse resolution in the discretized form of the 
coordinate map using our technique, compared to the fine resolution required for a 
Fokker-Planck solver in order to obtain the same accuracy in computation of 
moments and stresses in the flow. 

Relative to direct integration of moment evolution equations, however, the 
advantage of our technique is not speed of solution, but rather faithful solution of the 
governing equations. We require no approximation to close the governing equations. 
Therefore, the technique we propose will be useful in situations where closure 
approximations are known to be problematic, or in situations where reasonable closure 
approximations have not been developed. 

The flow we have chosen to analyse is pressure-driven flow between parallel flat 
plates. This flow is attractive for many reasons: the start-up problem is time- 
dependent; both the unsteady and steady problems have spatially inhomogeneous 
velocity gradients; the solution for a pure Newtonian fluid is well known; and finally 
experiments can easily be undertaken in order to compare physical data to the 
predictions of the calculations. There is, however, one aspect of our technique that is 
not tested by the example flow we consider here. In the solution of a general flow 
problem by the double-Lagrangian technique, the particle contribution to the stress 
would be computed at a large number of material points in the flow. In other words, 
we would calculate the particle contribution to the stress in a way that is Lagrangian 
in physical space. This information would then have to be transferred to the 
macroscopic flow equations, which would presumably be solved using a standard, 
Eulerian technique. For this step, it would be necessary to develop efficient and 
accurate approximations for the divergence of the stress, given stress values at a 
number of non-uniformly spaced material points. In contrast, for the example flow of 
the present work, particle paths are unimportant owing to translation invariance in the 
flow direction. Future work will focus on examples in which the Lagrangian aspect of 
the particle paths must be considered. 

The plan of the remainder of the paper is as follows. In $2 we give the macroscopic 
equations for the flowing suspension, specialized for our example flow. The particle 
contribution to the stress is left as a body force, to be computed by our new technique. 
In $3, we then outline our numerical solution procedures. The results of example 
calculations for various values of the dimensionless parameters are given in §4. These 
results are then compared in $ 5  with corresponding predictions obtained using some 
popular closure approximations to derive moment equations. We find that the moment 
evolution equations predict non-physical behaviour in some instances. Finally, in $6,  
we summarize our conclusions. In two Appendices, we consider (A) an alternative 
discretization of (1.3) which fails, and (B) tests of the numerical technique. 
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2. Formulation of the flow problem 

double-Lagrangian technique. 
In this section, we outline the numerical problem and our implementation of the 

2.1. Macroscopic equations 
We are interested in the case of parallel unidirectional flow of the suspension between 
flat plates. To be specific, let the plates lie at y = h, and y = - h, with the flow occurring 
in the x-direction. We assume that the suspension is initially quiescent, with the 
microstructure characterized by an isotropic distribution of orientations. The isotropic 
initial distribution of orientations would arise, for example, owing to the action of 
Brownian motion over - co < t < 0. At time t = 0, a spatially uniform pressure 
gradient ap/ax(t) is applied. 

The suspension must satisfy the macroscopic balance of linear momentum and of 
continuity. These equations are 

au 1 7 1 
- + u * vu = -- vps + 3 v2u + - v . TP, 
at P P P 

v - u  = 0, (2.2) 
where u is the velocity, p is the density of the solvent, p s  is the pressure due to the 
incompressibility of the solvent, and vS is the solvent viscosity. One may regard the 
macroscopic variables that appear in (2.1) as spatial averages of the local microscopic 
variables. In (2.1), we have partitioned the stress into solvent and particle 
contributions : 

7 = z s + 7 p ,  

where the solvent (Newtonian) contribution is 

7' = -psI+2gSE. 

The boundary conditions on the velocity field are: ZI = 0 and u = 0 on y = & h. 
There are a number of simplifications that result from the symmetry of the problem. 

Because the equations, the domain and the boundary conditions are invariant in the 
x- and z-directions, we expect that the solutions will be independent of x and z ;  thus 
we take a/ax = 0 and a/az = 0. The exception is that we allow a uniform pressure 
gradient to exist in the x-direction. Under these assumptions, the continuity equation 
(2.2) simplifies to au/ay = 0. The no-slip boundary conditions on velocity require 
v(y = +h) = 0; hence ZI = 0 everywhere. 

The symmetries a/ax = 0 and a/az = 0 may be used to simplify the balance of linear 
momentum also. The y-component of the balance of linear momentum (2.1) simplifies 
to 

Thus, the solvent pressure gradient serves to balance the particle contribution to the 
normal stress in the y-direction. The x-component of the balance of linear momentum 
(2.1) becomes 

(2.3 a) 

It is this equation that must be solved for u. 
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The boundary conditions for (2.3 a) are 

(2.3 b) 

Here we have used the spatial symmetry of the problem about the plane y = 0 to 
formulate a reduced problem on the half-domain to 0 < y < h. 

2.2. The particle contribution to the stress 

The particle contribution to the stress at a point in the suspension may be written as 

T' = - $ P o / + 2 ~ o  $E+pl $D,(RR) +pz $E: (RRRR) + 2 , ~ s  $ [ E . ( R R )  + ( R R ) . E ] ,  
(2.4) 

where $ is the volume fraction of particles, the constants pi ( i  = 0,3) are given in terms 
of the aspect ratio of the particles and the solvent viscosity, and Po is a pressure field 
due to the presence of the particles. In the expression for the particle contribution to 
the stress, the constants pLi ( i  = 0,3) are given by Giesekus (1962) when the particles are 
ellipsoids of revolution; see also Hinch & Leal (1976), and Lipscomb et al. (1988). 
These constants are uniquely determined by the aspect ratio of the particles when the 
particles are spheroids. 

Owing to the translational invariance in the x-direction, we have 

Hereafter, we combine the solvent and particle pressures as p = p ,  +$Po. Hence, the 
balance of linear momentua (2.3a) simplifies to the form 

and we require only the x,y component of the particle contribution to the stress. 

2.3. Non-dimensionalization 
The problem finally reduces, then, to solving (2.5) with the shear-stress component of 
the particle stress calculated from (2.4), and the moments of the distribution function 
obtained by solving (1.1 a, b) for the distribution function. In the next section, we shall 
discuss some details of the solution procedure. First, however, it is useful to obtain the 
governing equations in dimensionless form. This forces us to think carefully about the 
important physical phenomena, and the characteristic scales that specify them. 

We begin by simply adopting the scales that would be relevant for start-up flow of 
a Newtonian fluid. In particular, as a lengthscale for the macroscopic variables, we use 
the half-width of the channel, h, and as a timescale we use the viscous diffusion 
timescale, tDiff  = h2/v,. The velocity scale ucl is the (fully developed) centreline velocity 
of a pure Newtonian fluid flowing under the same conditions. These scales serve to 
define non-dimensional variables t*, u*, and x*. In addition, we suppose that the 
pressure and stress components are all characterized by the viscous stress scaling, 
ys ucl/h. With these choices, the momentum equation (2.5) becomes 
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while the particle-stress contribution is 

and the governing equation (1.1) for the distribution functionfcan be expressed in the 
form 

Sc- + V - [Pe{O*. R + G[E * - R - E * : RRR]} f - O f ] =  0. (2.8) 
a f  
at* 

The dimensionless parameters that appear in these equations are the volume fraction 
of particles q5, the ratios of the material parameters pO/vs, ,u1/ys, ,U~/~,J~ and p3/vS which 
are all 0(1), and the two parameters 

Sc = vs/(h2D,) (2.9) 

Pe = Ucl/(hDR) (2.10) 

which we denote as the Schmidt number, and 

which is the PCclet number for rotational Brownian diffusion. 
It can be seen that the PCclet number determines the relative importance of the 

advection term in (2.8) relative to diffusion. Since it is the flow effect that tends to drive 
the suspension towards an anisotropic orientation state, while diffusion tends to 
maintain a state of random (or isotropic) orientation, the magnitude of the PCclet 
number determines the degree of anisotropy. At steady state, it is the only dimensionless 
parameter that plays a role in determining the suspension behaviour. In a transient 
start-up flow, the details of the evolution of the orientation distribution also depend 
upon the ratio of timescales represented by the Schmidt number. These are the viscous 
diffusion scale which determines the timescale for start-up of the motion of the 
suspending fluid, and the rotational diffusion timescale Oil. 

Although the use of Peclet and Schmidt numbers seems quite natural for the specific 
problem of start-up flow of a suspension of non-spherical Brownian particles, it is 
worthwhile to remember that this is but one example of the general class of viscoelastic 
fluids, and to discuss briefly how the present parameterization is related to that which 
would normally be used for viscoelastic fluids. In this context, the suspension exhibits 
a single relaxation timescale, Oil, for return from an anisotropic to an isotropic 
(equilibrium) state. As we have noted earlier, the degree of anisotropy at steady state 
is determined by the magnitude of the local (or characteristic) velocity gradient relative 
to D,, namely Pe. This parameter would also be known as the Weissenberg number Wi 
in a normal viscoelastic flow problem - i.e. the velocity gradient non-dimensionalized 
with the relaxation time of the fluid. The only other timescale in the problem is that for 
evolution of the suspending fluid velocity profile, namely h2/vs .  Comparison of this 
timescale with the natural (viscoelastic) relaxation timescale of the fluid, namely Oil, 
determines the relative importance of memory effects in the flow. The ratio of these two 
timescales, which we denote above as the Schmidt number, would normally be called 
the Deborah number in viscoelastic flows. 

The use of Weissenberg and Deborah numbers as described above is consistent with 
' normal ' rheological understanding of the significance of these parameters. However, 
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FIGURE 1. Definition sketch for the modified spherical coordinates used to describe the state of a 
microstructural element. The angle u is measured in the 6- $ (x-y)  plane from the &axis; the angle 
19 is measured from the g-$ plane towards the <-axis. 

in start-up of a steady flow like that considered here, it is common to ignore the 
existence of a distinct internal timescale for vorticity diffusion in the solvent (effectively 
assuming that the solvent responds instantaneously to motion of boundaries, or to 
onset of a pressure gradient). Then, in a ‘steady’ problem like start-up of channel flow 
with a constant pressure gradient after t = 0, it has become common practice to use 
Weissenberg and Deborah numbers interchangeably, both based on the relaxation 
timescale of the fluid, and the characteristic steady shear rate, j, and to assume that 
it is only a problem like an oscillating shear flow with an imposed timescale that one 
needs to distinguish De and Wi. For example, if u = j ( t )  y and q(t) = j o  sin ot, then 
Wi = j o  h whereas De = oh, with h being the longest (‘principle’) relaxation timescale 
for the fluid. In this case, it is clear that Wi provides a measure of the expected degree 
of anisotropy, and De provides a measure of the importance of memory effects. Our 
formulation of the present problem only differs from the usual formulation in that we 
assume that the timescale h2/v ,  is not zero relative to the relaxation time h (i.e. to I&’), 
and thus our Deborah (or Schmidt) number involves h 2 / v ,  instead of an ‘imposed’ 
timescale like o-l. 

In the present work, we consider the influence of both Pe and Sc (or, Wi and De) 
numbers. As indicated above, it is usual in the analysis of start-up of steady shear-like 
flows to assume that Sc = GO, and examine the transient and steady-state behaviour of 
the fluid for various Pe (or Wi) values. Thus, an important aspect of the present work 
is to examine the sensitivity of the solution to finite Sc (or De) numbers, including a 
determination of the lower bound on the range of values of Sc where the approximation 
Sc = co can be used. Before turning to results, however, we discuss various aspects of 
the solution procedure in the next section. 
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3. Discussion of solution procedures 
3.1.  The discretized form of the coordinate map 

In this section, we begin with a detailed discussion of the solution of (1.3) to obtain a 
discretized form of the coordinate map from reference to deformed configurations. 
Configuration space for a rigid orientable particle consists of the sphere of orientations. 
Thus the coordinate map is a map from the sphere of orientations in the reference 
configuration to the sphere of orientations in the deformed configuration. Since we 
consider a map from the sphere to the sphere, it would seem natural to use spherical 
polar coordinates. However, spherical polar coordinates lead in this case to major 
numerical difficulties associated with the singularity of the coordinate system, as we 
describe in Appendix A. 

Rather than a spherical polar coordinate system, it is more practical to use local 
Cartesian coordinates (5, $, 9 to describe the sphere of orientations, as shown in 
figure 1 .  Thus, we express the vector R in component form as 

60, $07 C O )  

We emphasize that the local Cartesian coordinates (t, $, 9 associated with each 
material point are distinct from (but parallel to) the global Cartesian coordinates 
(x, y ,  z) .  Moreover, (to, $o, 6) are local Cartesian coordinates associated with the 
reference configuration of a specific material point of suspension, and (4,  $, <) are the 
local Cartesian coordinates associated with the current configuration of the same 
material point. As these coordinates describe points on the surface of the sphere, we 
put c2 + $z  + = 1. The dimensionless evolution equations for the coordinate map 
( 5 0 ,  $0, Q) + (5, $, C) are (for a parallel flow f.4 = U ( Y 7  t> e,) 

a t  1 au* 1 au* 1 

a@ 1 au* 1 au* 1 

$ + G -  7 $( 1 - 25') +- F:, - 
at* 2ay* 2 aY Pe 

5 +  G- ~ (( 1 - 2@') +- F;, - - - _ _ _ _  
at* 2ay* 2 ay* Pe 

( 3 . 1 ~ )  

(3.1 b)  

1; = +(1 -("$Z)i, (3.1 c) 

where Fb = eg Fi  + e,, F i  + ec F: is the Brownian term that we consider shortly. It may 
be observed that a (local) Cartesian coordinate representation of the sphere of 
orientations leads to evolution equations for the coordinate maps that avoid the 
problems associated with a singular coordinate system (see Appendix A). We have 
delayed an explicit representation of the Brownian force because it is accounted for in 
a geometrically motivated fashion. We return to this point shortly. 

3.1.1. Discretization of the sphere of orientations 
The contribution of the particles is accounted for as follows. At each of the (K+ 1) 

material points {y;,  k = 0, . . . , K }  across the half-thickness of the fluid layer, we 
compute the shear stress via (2.7). This calculation requires knowledge of the 
coordinate map between reference and deformed configurations, which is the solution 
of (3.1). Note that it is only necessary to solve (3.1) over the quarter-sphere 
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of orientations {(cr, 0): 0 < (T < n, 0 < 0 < fn], owing to symmetry considerations. 
(Although we solve for the coordinate map in Cartesian coordinates, it is at 
times convenient to refer to an equivalent (modified) spherical polar description, 
defined in figure 1 .) In order to compute the coordinate map at each y:, we follow the 
evolution of a set of particles with initial orientations 

This scheme for the discretization of the quarter-sphere of orientations has the 
advantage that the density of points in the grid per unit surface area is approximately 
constant. As an example, a value of j,,, = 10 yields a discretization in which 121 
points cover the quarter-sphere. If instead we used a ‘regular grid’ in ((T, 0) with the 
same resolution in the plane I9 = 0, we would require 21 1 points to cover the quarter- 
sphere, with an uneven distribution concentrated near 0 = fn. As one anticipates no 
dynamics of peculiar subtlety near I9 = in, the increased discretization of a ‘regular 
grid’ would be wasted there. 

3.1.2. The Brownian term 

Now, we turn to the calculation of the Brownian term in (1.3). Rather than using a 
differential form of the Brownian term, we use a geometrically motivated form that we 
now describe. The grid (3.2) can be interpreted as defining an array of spherical 
triangles on the surface of the (quarter-) sphere of orientations, as indicated in figure 
2. In pursuing a method for calculation of the Brownian term, we shall approximate 
the determinant of the deformation gradient tensor, det [V, R( t ;  I?,)], as a (time- 
dependent) constant over each of the small spherical triangles defined by the grid (3.2), 
as it evolves in time. It is a simple matter to show that the expression det [V,R(t;R,)], 
integrated over one such spherical triangle in the reference configuration, gives the 
ratio of the areas of the same spherical triangle in the deformed to the reference 
configurations. Therefore, we can obtain the determinant of the deformation gradient 
tensor for each spherical triangle in the set that covers the quarter-sphere simply by 
computing the proper area ratios of spherical triangles. 

With the approximation that det [V, R(t;  R,)] is a constant over each spherical 
triangle in the grid, we have the following restatement of (1.2) in a form that is more 
suitable for numerical work : 

1 Area[A0,] 
4n Area [A,]’ 

f * ( t ;  A,) = - 

where A ,  symbolizes the mth spherical triangle in the deformed (current) configuration, 
and AO, is the mth spherical triangle in the reference configuration. Thus the Brownian 
term, the last term in (1.3), may be written 

Fb = - (3.3) 

The gradient in (3.3) is calculated by second-order-accurate finite differences on a grid 
with points at the centroid of each spherical triangle of which the particle in question 
is a vertex. In practice, this calculation is most efficiently performed on the plane 
tangent to the sphere of orientations at the point of interest, as sketched in figure 3. The 
triangles are not projected flat for the purpose of computing areas; only the locations 
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FIGURE 2. An example of the grid of orientations used to describe the coordinate map from reference 
to deformed configurations, showing the reference configuration forjmaz = 15, together with one of 
the associated spherical triangles. 

Projection of grid 
onto tangent plane 

Reference configuration Deformed configuration 

FIGURE 3. A sketch of the grid on which the Brownian term is evaluated using finite differences. 
The grid lies in the tangent plane of the sphere at the point of interest. 

of the centroids are projected onto the tangent plane in order to facilitate computation 
of the gradient. If the triangles become highly deformed, this approximation may be 
a source of errors. This procedure is a stable and robust way to compute the highly 
nonlinear Brownian terms. 

3.2. Diagnostic quan t it ies 
In summary, the parameters that we can vary in this example flow are: 

(1) r ,  the aspect ratio of the particles, which fixes pi/ys ( i  = 0, 1,2,3), 
(ii) $, the volume fraction of particles, 

(iii) Pe, the PCclet number (alternatively this may be denoted as the Weissenberg 

(iv) Sc, the Schmidt number (alternatively, this may be denoted as the Deborah 

For pressure-driven flows, the interesting quantity to measure is the flow rate acquired 
by the suspension in response to the applied pressure gradient. The dimensionless flow 
rate is 

number), and 

number) . 
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If the flow is steady and Newtonian (Poiseuille flow), then the dimensionless flow rate 
for the suspending fluid (viscosity vs)  is QXewt = $ and the centreline velocity is related 
to the pressure drop in the channel as 

For the non-Newtonian suspension flow, the only dimensionless group that depends on 
the flow rate is the Ptclet number which is defined in terms of the Newtonian value for 
ucL, see (2.10). Effectively, we use ucI to represent the magnitude of the streamwise 
pressure gradient, and the Ptclet number could equally well be defined in terms of the 
externally applied pressure gradient, -8ppldx = G, as 

Thus, varying the Piclet number is equivalent to varying the applied pressure gradient. 
Of course, for the suspension the dimensionless volume flow rate for a given pressure 
drop will generally depend on all of the dimensionless parameters listed above, and will 
be smaller than the Newtonian value Q* = for the suspending fluid. 

3.3. Solution strategy 
We solve the balance of linear momentum (2.3) using a finite difference method. For 
the Newtonian part of (2.3 a), we use centred-space and backward-time differences to 
yield an implicit tridiagonal system that is solved by the Thomas algorithm. The grid 
includes (K+ 1) points y,* across the half-thickness of the flow 0 < y* < 1 at which we 
compute the velocity. The particle contribution to the stress is left as a body force for 
the purposes of solution of (2.3). 

The divergence of the particle contribution to the stress is computed as follows. At 
each grid point in the physical domain J$, the particle contribution to the stress is 
computed by the methods we have outlined above. The derivative with respect to y* 
is computed on this grid by second-order-accurate finite differences. No special particle 
dynamics are assumed to occur near the walls at y* = 1, for two reasons. First, it is 
not possible to regard the orientation of particles at the wall as a boundary condition 
on, say ( R R ) ,  because we do not solve a field equation for ( R R ) .  Second, a recent 
study of dynamics of single particles in the neighbourhood of a wall (Dingman 1992) 
shows the wall to have very little effect on the motion of rod-like particles. 

The order of solution of the equations is as follows. Let us assume that we know 
everything at a given time step and we wish to compute data at the next time step. We 
begin with the implicit solution of the momentum equation (2.6), where the non- 
Newtonian contribution to the stress is taken to be the value at the previous time step. 
Next, we use a predictor-corrector scheme to update the ensembles of orientations (3.2) 
that serve to define the discretized coordinate map at each material point y,*. The 
Brownian term is computed by finite difference approximation of (3.3). A new value for 
the non-Newtonian contribution of the stress is obtained, and then the velocity field is 
corrected. 

4. Inhomogeneous pressure-driven flow 
We turn to the results of our calculations of pressure-driven flows of a suspension 

of rigid orientable particles between parallel plates. Of course, steady pressure-driven 
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flow of a Newtonian fluid between parallel plates is simply Poiseuille flow; this is the 
baseline to which we compare. 

4.1. The start-up problem for  dierent flow rates, and fixed Schmidt number 
Owing to the large number of parameters in the problem, we must work with a reduced 
set of values that yield interesting behaviour. In order to compare with the work of 
others (e.g. Hinch & Leal 1976), we consider suspensions of particles with a single, fixed 
aspect ratio r = 5. For the volume concentration 4, we choose 4 YO which is roughly the 
upper limit of the dilute regime q5r2 = O(1). The remaining two parameters are Peclet 
number and Schmidt number. In the following two sections we explore the influence 
of each of these separately, beginning with variation of Pe for fixed Sc. We have noted 
previously that the PCclet (or Weissenberg) number provides a measure of the expected 
degree of anisotropy, while Schmidt (or Deborah) number determines the significance 
of 'memory' effects with the limit Sc = m representing the case of instantaneous 
response of the suspending fluid compared to the relaxation timescale of the suspension 
(i.e. 0;'). In the present section, we fix Schmidt number at Sc = 10. For this value of 
the Schmidt number, we have found that Pe between 0.5 and 100 encompasses most 
of the range of interesting behaviour. For example, for Pe < 0.5, we shall see that the 
orientation distribution near the walls, where the shear rate is largest, is virtually 
isotropic at steady state. On the other hand, for Pe > 100, it is virtually a delta 
function. Of course, for other values of Sc, the range of interesting values for Pe will 
be shifted one way or the other. Finally, it may also be noted (and shown in detail in 
the next section) that Sc = 10 is sufficiently large to approximate the limiting case 
Sc = a. Thus, the suspension response at each point should be very similar to the 
known behaviour of a dilute solution in a simple shear flow at the local shear rate 
(under the usual assumption that the suspending fluid flow is established in- 
stantaneously). Any differences are due to the fact that the concentration here is large 
enough that there is a moderate change in the flow due to the changes in the particle 
configuration, and this is not true in the usual studies of dilute suspension behaviour 
(cf. Hinch & Leal 1973; Advani & Tucker 1987, 1990; Altan, Advani & Giigeri 1989, 
among others). 

Let us then consider briefly the computed results for fixed Sc = 10. The most obvious 
consequence of the addition of suspended particles, is that the suspension flows at a 
reduced rate compared to the pure (Newtonian) solvent when forced by the same 
pressure gradient. In figure 4 we plot the asymptotic steady normalized flow rate of the 
suspension, Q*/Qgewt, versus the logarithm of Pe. These solutions were obtained by 
integrating the start-up problem with initially isotropic particle distributions until a 
steady state was achieved. In addition to the reduced rate of flow of the suspension 
compared to that of a pure Newtonian fluid, one observes that the suspension exhibits 
shear-thinning behaviour; as the PCclet number increases, the flow rate of the 
suspension is closer to that of the pure Newtonian suspending fluid. The normalized 
volume flow rate levels off at low PCclet numbers to a plateau value which corresponds 
to a Newtonian fluid with a viscosity v e f f / ~ 8  = 1.232, equal to that of the suspension 
with an isotropic orientation distribution everywhere in the domain. As the flow rate 
increases, the orientation distribution becomes increasingly anisotropic, beginning 
with the region near the walls, and the apparent viscosity decreases, reflecting a 
reduction in the effective viscosity near the walls. The upper limiting value of Q*/Q;,,, 
at very large Pe corresponds to a constant viscosity fluid with viscosity, vef f /vS  = 1.1 13 
(cf. Hinch & Leal 1976) which is the value for maximal alignment of particles in the 
flow direction everywhere in the flow domain. At Pe = 100, the suspension exhibits its 
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FIGURE 4. Normalized asymptotic flow rate of a pressure-driven flow of a suspension Q*/QFewt versus 
the PCclet number Pe. Flows were computed for a suspension of particles of aspect ratio 5, volume 
concentration 4 % ,  and Schmidt number Sc = 10. Note the shear-thinning behaviour exhibited over 
two magnitudes of Pe. The asymptotes for Pe + 0 and Pe + co are shown. 

asymptotic limiting behaviour over the majority of the flow domain but, as we shall see 
below, is still far from the high-Pe limiting behaviour in the immediate vicinity of the 
centreline. 

This shear-thinning behaviour of the suspension is especially evident if one examines 
the asymptotic steady profiles of the effective shear viscosity (defined below) across the 
flow channel, shown in figure 5.  The different curves in the figure correspond to the 
steady profiles of effective shear viscosity for different values of Pe. Of course, the 
effective shear viscosity, defined by 

is not defined on the centreline, where the velocity gradient is zero. Thus, the curves 
[7ef f /7 , ] (y* ,  t+ m) shown in figure 5 do not begin at y* = 0. It is obvious that the 
effective shear viscosity near the centreline must always be larger than that near the 
wall. What is interesting about the results in figure 5 is the sensitivity to Pe, and the 
fact that the effective viscosity approaches its large-Pe asymptotic value over such a 
large fraction of the flow domain at the relatively modest value of Pe = 100. 

The cause of the drop in effective shear viscosity near the wall is, of course, the 
anisotropic contribution to the shear stress as a consequence of preferential orientation 
of particles by the flow. As there is no velocity gradient at the centreline, the orientation 
distribution of particles there is isotropic at all flow rates. The largest velocity gradients 
are near the wall; in steady Newtonian flow (Poiseuille flow), the magnitude of the 
(dimensionless) velocity gradient ranges from 0 on the plane of symmetry to 2 at the 
wall (i.e. the local PCclet or Weissenberg number varies from twice the characteristic 
value based on ucl/h to 0 as we move from the wall to the channel centreline). This, in 
turn, leads to more anisotropic orientation distributions for particles near the wall. 

In figure 6 (a-c), we show snapshots of the particles at a specific material point near 
the wall for three different Ptclet numbers: Pe = 1, 10 and 100, respectively. For 
reference, we also show an isotropic distribution of orientations, such as that of the 
ensemble on the centreline, in figure 6(d ) .  There is a clear increase in the degree of 
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FIGURE 5. Asymptotic profiles of the local effective shear viscosity through the half-thickness of the 
flow. The contribution of the solvent is unity. These profiles correspond to the flows of figure 5 ,  with 
PCclet numbers Pe = 100, 56.234, 31.623, 17.783, 10, 5.623, 3.162, 1.778, 1, 0.562, reading from left 
to right. The drop in local effective shear viscosity near the wall is most dramatic for the fastest flows. 
The left-most curve is associated with greatest anisotropy, whereas the right-most curve is associated 
with an almost isotropic suspension. The vertical dashed lines show the asymptotic values for Pe+ co 
and Pe+O. 

anisotropy with increased flow rate (hence greater Pe). Moreover, the dominant 
orientation of particles lies closer to the flow direction for higher flow rates, cf. figure 
6(a, c). An obvious advantage of the double-Lagrangian technique over a technique 
such as direct solution of moment evolution equations is the capability to examine 
particle motions directly, in order to determine at the most basic level the source of 
observed non-Newtonian effects. Of course, knowledge of the components of the 
relevant moment tensor(s) (perhaps obtained through a standard approach with a 
closure model) does allow one to deduce dominant orientations of particles, etc. 
However, as we shall demonstrate shortly, some closure models in widespread use lead 
to non-physical values for the components of the moment tensor, even in uniform 
shear flow. 

Finally, we examine the temporal evolution of the effective shear viscosity. The best 
way to understand the development of this spatially inhomogeneous flow is as follows. 
At each value of y*, one can imagine conducting an (unsteady) uniform shear 
experiment in which anisotropy in particle orientation develops owing to the local 
velocity gradient. The asymptotic extent of anisotropy in the orientation distribution 
depends on the local velocity gradient y ,  just as it does in uniform shear flow. 
Moreover, in uniform shear flow, anisotropy of the particle orientation distribution 
evolves on the timescale y t  = O(Pe); hence, at different points in y*, the flow is at a 
different stage of evolution, eventually merging as t + co. 

Initially the distribution of orientations is random; particles are set into motion 
along virtually undisturbed ‘Jeffery ’ orbits characterized by trajectories that linger in 
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FIGURE 6. Instantaneous snapshot of the orientations of particles in an ensemble near the wall, in the 
asymptotically steady flow. Individual particle orientations are indicated by a dot (z 2 0) on the 
sphere of orientations. (a)  Pe = 1.  Note the favoured orientation at about 25" clockwise from the x- 
axis. (b) Pe = 10. Anisotropy is increased, and the favoured orientation lies closer to the direction of 
flow. (c) Pe = 100. Anisotropy is still more extreme, and the favoured orientation lies even closer to 
the direction of flow. ( d )  Isotropic distribution of orientations, included for reference. This 
distribution is maintained at all times on the plane of symmetry of the pressure-driven flow. 

a state approximately aligned with the flow, and then overturn. As is well known, the 
shear viscosity associated with particle motion along undisturbed Jeffery orbits is 
initially periodic in time in steady shear because the periodic rotation of the particles 
causes the orientation distribution function to be a periodic function if the initial 
distribution is random. However, in competition with this effect are the Brownian 
motions, which tend to redistribute particles both along and across the Jeffery orbits. 
This leads to a damping of the otherwise periodic shear viscosity. In shear flow, the 
damping is strong when the Peclet number is small so that Brownian motion is 
dominant over flow-induced particle orientation, and weak when it is large. The final 
steady-state viscosity (and the Eulerian form of the orientation distribution) is time 
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independent, even though individual particles continue to rotate periodically in time. 
(It may be noted however, that both the Lagrangian form of the distribution and the 
mapping on which it is based remain time dependent because the particles keep 
rotating.) We refer the reader to Leal & Hinch (1972) and Hinch & Leal (1973) for a 
discussion of these phenomena in various limiting cases. In the present flow, the 
situation is complicated by the fact noted earlier that the local PCclet number (based 
on the local shear rate) varies from approximately twice the nominal PCclet number 
(Pe) at the wall to zero at the plane of symmetry. Hence the microstructure, and 
therefore also the effective shear viscosity, evolves in a spatially inhomogeneous 
manner. 

These points are illustrated in figure 7(a-c), in which we show the temporal 
evolution of the effective shear viscosity profiles when Pe = 1, 10 and 100 and Sc = 10. 
In figure 7(a) we show the development of the effective shear viscosity profile 
[7ef f /7 , ] (y* ,  t*) for various t* in the case of slow flow with Pe = 1. One observes that 
the shear viscosity near the wall overshoots slightly. Note that the oscillations about 
the asymptotic profile are very quickly damped in this case, achieving a steady state 
when t* = O(Sc). 

When the flow rate is increased so that Pe = 10, the development of the effective 
shear viscosity profile is considerably more dynamic, as shown in figure 7(b).  The 
effective shear viscosity increases throughout the layer, initially, and then drops near 
the wall to its asymptotic value. Near the plane of symmetry, where the local Peclet 
number is close to zero, note that there is no oscillation about the asymptotic value of 
the effective shear viscosity. Again, one observes that steady state is reached when 
t* = O(Sc). 

In figure 7(c), in which we show [ v e f f / 7 J ( y * ,  t*) for various t* and Pe = 100, the 
effect is even more dramatic. The effective shear viscosity overshoots, dropping to a 
wall value less than the asymptotic value of [qeff/q,] near the walls. This is an indication 
that, instantaneously, the particle orientation distribution is more aligned with the flow 
than it is asymptotically. The evolving profile changes direction, with the shear 
viscosity growing near the wall, and overshoots the asymptotic profile once again. 
Finally, a steady state is achieved when t* = O(Sc). As before, however, the effective 
shear viscosity grows in a monotonic fashion near the plane of symmetry. 

The data of figure 7(c) reflect, at least qualitatively, the transient behaviour that is 
observed for the suspension upon start-up of simple shear flow at increasing values of 
Pe (or Weissenberg number). It is well known in the latter case that the transient 
behaviour is monotonic in time for small Pe, but exhibits overshoots and an oscillatory 
approach to steady state that becomes increasingly pronounced as Pe is increased. We 
should emphasize here that all of the transient behaviour evident in figure 7 is due to 
the transient response of the orientation distribution to an instantaneously established 
shear flow of the suspending fluid. As we shall see in the next section, transients for 
smaller Schmidt (or Deborah) numbers will also reflect the evolution of the suspending 
fluid velocity profile on a finite timescale. The data of figure 7(c)  demonstrate how 
waves arise naturally from the microscale physics, owing to the different rates of 
evolution of particle orientation distribution at different y*. It is of interest to note, in 
the present context, that the differential equation for the velocity field (2.6) is parabolic, 
and so would not normally give rise to wave-like solutions. However, the complex 
interactions between macroscale and microscale evidently result in these phenomena 
which one normally associates with (explicitly) hyperbolic systems. 
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FIGURE 7. Transient local effective shear viscosity profiles. (a) Pe = 1. The times for the curves are 
t* = 0.5,1.0,1.5,. . ., 10 reading from front to back. The local effective shear viscosity is first slightly 
greater near the wall, and then slightly less near the wall as anisotropy in particle orientations 
develops near the wall. (b) Pe = 10; the times are t* = 0.5, l  .O, . . . , l O . O ,  reading from front to back. 
(c) Pe = 10; the times are t* = 0.1,0.2,. . . ,3.0, reading from front to back. The development of the 
profile is extremely complicated, requiring several oscillations before settling down to steady state. 
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4.2. The start-up problem for dierent Schmidt (Deborah) numbers 
As we pointed out previously, the Schmidt (or Deborah) number is the ratio of 
timescales for development of the orientation distribution of particles to the timescale 
for development of the Newtonian part of the flow. An interesting question arises if one 
contemplates an experimental study of pressure-driven flows of suspensions. A quite 
typical assumption in the analysis of experimental rheological data is that the velocity 
gradient seen by the particles is steady, i.e. develops instantaneously. Of course, all 
flows of Newtonian fluids require some finite time in which to become fully developed, 
and the question that arises quite naturally is: for a given suspension what is the 
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FIGURE 8. Effective shear viscosity at the wall versus time for the start-up of pressure-driven flow of 
a suspension with Schmidt number Sc = co, 1000 (virtually coincident), 100 (slight time lag) and 10 
(considerable time lag), and 1 (major time lag). Each flow is computed with Pe = 100. This illustrates 
the point that the assumption of an instantaneously fully developed Newtonian part of the flow is 
valid for Sc B 1. 

minimum value of the Schmidt number above which one can neglect the initial 
transient development of the Newtonian part of the flow field? 

In order to address this question, we undertook the following numerical experiments. 
We set Pe = 100, and ran the start-up flow for Sc values of 1, 10, 1000 and 00. The 
latter calculation corresponds to neglect of the initial transient in development of the 
Newtonian part of the flow. A plot of the effective shear viscosity at the wall versus 
t(u,,/h) for each Schmidt number is shown in figure 8. Although it is difficult to see, 
there are in fact five curves in the figure; the curves at Sc = 1000 and Sc = 00 virtually 
coincide. 

In figure 8, one observes immediately that the time traces for all Sc 2 10 are 
qualitatively similar. However, there is a small time lag observable in the Sc = 100 
curve, and a quite considerable lag when Sc = 10 (relatively to Sc = GO). This supports 
our assertion that when Sc + 1, the Newtonian part of the flow develops sufficiently 
quickly, relative to the development of the particle orientation distribution, that the 
assumption of instantaneously fully developed Newtonian part of the flow is a good 
one. 

The cases of Sc = 1 and 10 are seen to be quite different; this is clearly a consequence 
of the slow evolution of the Newtonian part of the flow field relative to the intrinsic 
timescale OR1, for development of the orientation distribution. When the Newtonian 
part of the flow field evolves slowly, the particles near the wall experience a large 
magnitude of the velocity gradient for an important portion of the time over which the 
orientation distribution evolves. This increased value of the velocity gradient at the 
wall is responsible for the time-lag one observes for Sc = 1 and 10 in figure 8. 

It may seem rather surprising at first that the criterion for neglect of the initial 
transient in the development of the velocity profile for the suspending fluid depends 
only on Sc, because it can be seen from the definition (2.9) that this means that the 
answer nas nothing to do with the nominal flow rate (i.e. the applied pressure gradient). 
The two competing timescales are the diffusive timescale h 2 / v ,  and the natural 
relaxation timescale of the fluid, namely the inverse rotational Brownian diffusivity 
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(whose ratio is Sc), and neither depends in any way on the flow rate. Nevertheless, 
some care needs to be taken in the interpretation of this result. We assume implicitly 
for all of our calculations that the flow channel is sufficiently long that end effects can 
be completely neglected. In particular, the length of the entry region where the flow and 
the orientation distribution are developing must be small compared to the total length 
of the flow channel if the results obtained here are to have a direct counterpart in the 
macroscopic flow rate/pressure gradient data. 

This criterion will be easiest to satisfy when the flow rate is lowest, because the 
distance travelled downstream from the entry to the fully developed region is directly 
proportional to ucI, i.e. 

L/h  for steady state z Pe, 
L /h  for steady state z Pe/Sc, 

s c +  1 ;  
Sc < 1. 

Thus, given a flow channel of some fixed length-to-width ratio, L/h,  there will be a 
maximum flow rate above which the entry region cannot be ignored in the 
interpretation of experimental results. However, this is quite distinct, as indicated 
already, from neglect of the initial transient in the suspending fluid flow. Clearly, for 
the latter it is necessary that Sc 3 100 or even 1000, depending upon the expected level 
of temporal resolution. 

5. Evaluation of closure approximations 
Now we compare the results of our calculations to those we obtain by direct solution 

of moment evolution equations derived using two different closure approximations. 
This comparison shows the closure approximations to be in error, but more 
importantly reveals that non-physical effects may be predicted by the closure models. 
These possibilities for non-physical behaviour in the closure models are investigated by 
consideration of the structure of the associated equations. 

As discussed previously, the object of a closure approximation is to write a higher- 
order moment of the distribution function in terms of lower-order moments, in order 
that one may derive a closed set of evolution equations for the moment(s) required to 
calculate the stresses. One common approximation is the so-called quadratic 
approximation, 

which is attractive primarily due to its simple form. A more sophisticated 
approximation is the composite closure derived by Hinch & Leal (1975, 1976), 

( R R R R ) : E  z ( R R ) ( R R ) : E ,  (5.1 a) 

( R R R R )  : E z ;[6( R R )  * E .  ( R R )  - ( R R )  ( R R )  E - 2/(RR)' : E -k 2/ (RR)  :El.  
(5.1 b) 

The latter expression has the correct limiting form in weak and in strong flows. As 
discussed at some length in I, both approximations have been shown to result in errors, 
especially for suspensions of particles with large aspect ratio. We shall test these closure 
models against the results of the example calculations reported above, which span the 
range of Pe (or Wi) between the high- and low-shear-rate Newtonian regimes for a 
suspension of particles with aspect ratio 5, volume concentration 4 % and Sc = 10. As 
erroneous behaviour is already well-known for the closure models for particles of large 
aspect ratio, our tests are therefore not the most demanding tests of the closure 
approximations that one might devise. Nevertheless, as we shall see, these 
approximations can lead to non-physical behaviour. 
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In the present case of unidirectional flow, the particle contribution to the stress for 
the quadratic closure is easily computed as 

and the moment evolution equations are, in components, 

d 1 au 
dt 2 aY 
-(RR),, = -6DR(RR),,+--(-l +G)(RR),, 

(5.3 b)  
1 au au 

2 aY aY 

d au au 

dt aY aY 

+- - ( 1  + G) (RR),, - 2G- (RR);,, 

-(RR),, = ~DR-~DR(RR), ,+-(-  1 + G)(RR),,-2G-(RR),,(RR),,. 

(5.3 c) 

The evolution equations for the other components ((RR),., (RR),,, (RR),,) are not 
required for evaluation of the particle contribution to the stress. 

For the composite closure approximation of Hinch & Leal, the particle contribution 
to the shear stress is 

1 au 4 au 6 au +- - ( 1  + G) (RR),, --G - (RR);, --G- (RR),,(RR),,, (5.5 b)  
2 aY 5 aY 5 aY 
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FIGURE 9. Comparison of the shear-thinning behaviour of the suspension, calculated using : the 
(exact) double-Lagrangian technique (--), using integration of direct moment evolution equations 
with the quadratic closure (---), and using the Hinch-Leal composite closure (----). These 
calculations are for a suspension of particles of aspect ratio 5 ,  volume concentration 4 % ,  and 
Schmidt number Sc = 10. The asymptotes for Pe + 0 and Pe+ co are shown. 

Note that we generally also require the additional equations 

d 1 au 
dt 2 aY 
- ( RR),, = - 6D,(RR),, + - - (- 1 + G) (RR),, 

4 au  6 c?u 

5 ay 5 ay 
--G-(RR),,(RR),,--G-{RR),.(RR),,. (5.5e) 

However, the initial conditions on (RR),, and (RR),, are zero for an isotropic initial 
state; hence ( 5 . 5 4  e )  lead to the conclusion that (RR),. and (RR),, are zero for all 
time. Thus we need to integrate (5.5a-c) only, in order to obtain the required moment 
components for the particle contribution to the shear stress. 

5.1, Pressure-driven f low computed using diferent closure models 
Now we compare the exact pressure-driven flow calculations that we have reported in 
the previous section, with the results one can obtain using the quadratic closure or the 
Hinch-Leal composite closure. In figure 9, we show the asymptotic, normalized flow 
rate plotted against the logarithm of Pe for the double-Lagrangian calculation (the full 
equations), for the pre-averaged closure, and for the Hinch-Leal closure. All three 
solutions show the shear-thinning effect, and, to some degree, the levelling-off at the 
transition to the two Newtonian regimes. The Hinch-Leal closure reflects the shear- 
thinning behaviour more accurately; the greatest departure from the exact results 
occurs for the largest Piclet numbers. Even so, the Hinch-Leal closure is accurate to 
within about 10 % in predicting the deficit in flow rate due to the addition of particles 
for the full range of parameters that we investigated. 
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The quadratic closure is not as accurate, either for slow or for fast flows. It tends to 
yield shear-thinning behaviour that is considerably more dramatic than the full 
equations would suggest. At its worst, the pre-averaged closure is more than 30 % in 
error in predicting the deficit in flow due to the addition of particles in the calculations 
reported here. 

In figure lO(a-c), we compare asymptotic shear viscosity profiles obtained by the 
three methods at Pe = 0.1, 10, and 100, respectively. Figure 10(a) shows very accurate 
approximation by the Hinch-Leal closure, and an over-prediction of the shear 
viscosity by the pre-averaged closure. At Pe = 10, the profiles in figure 10(h) reveal that 
the closure approximations both tend to over-predict the shear-thinning behaviour of 
the suspension. The decrease in effective shear viscosity near the walls is larger for the 
quadratic closure and the Hinch-Leal closure than for the full equations. This effect is 
more evident in figure lO(c), where we show the effective shear viscosity profles when 
Pe = 100. 

Figures 1O(c) and 9 indicate that the principal problem with the pre-averaged closure 
is its failure to predict adequately the transition to the second Newtonian regime at 
high values of Pe. In figure 9, the long-dashed curve does not level of€ at high Pe, as 
do the curves corresponding to the Hinch-Leal closure and the full equations. In figure 
lO(c), the quadratic closure profile of the effective shear viscosity continues to drop 
near the wall while the profiles for the Hinch-Leal closure and for the full equations 
level off. 

5.2. Observed non-physical behaviour in closure models 
At this moderate value of the particle aspect ratio (r = 5) ,  the closure approximations 
seem to perform adequately in capturing the qualitative shear-thinning behaviour of 
the suspension. However, there are pathological problems with the closure approxi- 
mations that surfaced during the integration of the moment evolution equations. 
To be specific, we found that both closures can lead to non-physical components of the 
moment tensor, even in uniform shear flow. An example of this phenomenon is shown 
in figure 1 1  (a-c), where we have plotted time traces (rescaled by the shear rate) of the 
moment components obtained from simulation of the full equations by our new 
technique (figure 1 1  a), by integration of the quadratic closure equations (5.3) (figure 
1 1  b), and by integration of the Hinch--Leal composite closure equations (5 .5 )  (figure 
l l c ) .  This integration is carried out for a uniform shear flow with Peclet number 
defined by Pe = ( l / D R )  (au/ay) = 200. 

Upon examination, the time traces in figures Il(a) and l l ( b )  look qualitatively 
similar ; thus the quadratic closurs equations have the same qualitative transient 
behaviour as the full equations. Figure 1 1  (c), however, looks quite different. First, one 
notices that oscillations in the moments persist for a considerably longer time with the 
Hinch-Leal composite closure than with the pre-averaged closure or the full equations. 
This has to do, no doubt, with the nonlinear terms in the closure model equations. 
More importantly, the time trace of ( R R ) y y  in figure 6(c) shows that this diagonal 
component of the moment is negative over a significant period of time early in the 
response. This is, of course, non-physical, as it would correspond to negative 
probabilities of particle orientations in the associated direction. 

5.3. The source of non-physical behaviour in closure models 
This pathological behaviour is actually possible in both of the closure approximations 
that we have considered, as one may establish by the following arguments. Consider 
first the pre-averaged closure equations. Our goal is to investigate when negative values 
for the diagonal components (RR) , ,  and (RR)yy are possible. In this connection, it 
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is profitable to consider the three-dimensional phase space of equations (5.3) which has 
coordinates (RR),,, (RR),u, and (RR),,. At the boundaries of the first quadrant of 
the ((RR),,, (RR),,)-plane, we require that the vector field of (5.3) be directed 
inward, into the first quadrant. For only then will (RR),, 3 0 and (RR),, 3 0 be 
assured for all time, assuming this is true initially. Now we check (5.3) to see whether 
this is so. First we evaluate ( 5 . 3 ~ ~ )  on the first quadrant boundary (RR),, = 0 

= 2+Pe(l +G)(RR),,. 
1 d  

D, dt  (fW,,=~ 

Similarly, we evaluate (5.3 c) on the first quadrant boundary (RR)uy = 0 

= 2 + Pe( - 1 + G) (RR),,. 
1 d  

D, dt (RWyy=O 

(5.6a) 

(5.6b) 

Now, bearing in mind that the off-diagonal moment component (RR),, may be 
positive or negative at any instant, it is clear that (5.6) show that non-physical, negative 
moment components (RR),, and (RR),, may arise in quite general situations. One 
can argue from (5.6a) that the possibility of negative diagonal moment components is 
greater when the PCclet number is large, and when the particle aspect ratio (hence also 
G) is large. 

These same arguments may be applied to the Hinch-Leal composite closure 
equations, with a similar conclusion. Equations (5.5a) and (5 .5~)  lead to 

In the worst instance, (RR),, = 1 for (5.7a), and (RR),, = 1 for (5.7b); thus the 
worst-case forms of (5.7) are (5.6)! The same arguments as for the quadratic equations 
lead to the conclusion that the Hinch-Leal composite closure equations may also 
develop negative diagonal moment components. 

These considerations may prompt one to ask why are there negative diagonal 
moment components in figure 11 (c) but not in figure 11 (b), if both closures have the 
same possibility of pathological behaviour at high shear rates. The answer is that the 
arguments presented above apply to the whole of phase space, whereas the time traces 
of figure 1 I represent a single solution with isotropic initial condition. It happens that 
the solution beginning at this isotropic initial condition leaves the first quadrant of the 
((RR)%., (RR),,)-plane for the Hinch-Leal closure equations, but not for the 
quadratic closure equations. Our analysis of the vector fields of these equations 
indicates that there are initial conditions (not necessarily isotropic) that lead to non- 
physical, negative diagonal moment components for both closures. 

Of course, our results for the shear stresses obtained by the closure models are not 
too terrible, being from 10-30% inaccurate compared to the full equations for the 
examples we tested. However, if one uses the components of the moment tensors to 

FIGURE 10. Comparison of the effective shear viscosity profiles. The different curves are calculated 
using the double Lagrangian technique (--), using integration of direct moment evolution 
equations with the quadratic closure (---), and using the Hinch-Leal composite closure (----). (a) 
Pe = 1 ;  (b) Pe = 10; (c) Pe = 100. 
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FIGURE 11. The moments (RR),,,  (RR),, and (RR)yy us. time multiplied by the shear rate for 
uniform shear flow at Peclet number 200, obtained by (a) the double-Lagrangian technique; (b) 
obtained by integration of direct moment evolution equations with the quadratic closure; (c) 
obtained by integration of direct moment evolution equations with the Hinch-Leal composite 
closure. Note the non-physical behaviour in (c) when the diagonal moment component (RR),,  is 
negative. 
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deduce characteristics of the solution such as dominant particle orientations, etc., one 
will undoubtedly run into serious trouble when using these closure approximations. In 
addition, the transient behaviour of the full equations can be quite different from the 
transient behaviour of closure models, as shown in figure 11. This may lead to 
instabilities in numerical integration of closure models that have nothing whatever to 
do with the behaviour of solutions to the model equations without closure 
approximations. 

5.4. Manifestations of non-physical behaviour in prior work 
In the previous subsection, we argued that non-physical behaviour may arise in either 
closure model that we examined. While the closure models were found to be in error 
by 10-30 YO in their predictions of the shear-thinning behaviour of the suspension, the 
diagonal components of the second moment tensor were capable of becoming negative 
over a portion of their evolution when computed by the closure models. 

This evaluation of closure models is not the first that has been undertaken. Advani 
& Tucker (1989) report an evaluation of closure models including the quadratic closure 
(5.1 a). Their evaluation consists of integrating the moment evolution equations in a 
steady uniform flow and checking the result against the solution of the associated 
Fokker-Planck equation. However, the orientation distributions, like the flow fields, 
are assumed to be planar, and so this analysis is not directly related to the present 
work. 

Similarly, the work of Altan et al. (1989) is not directly applicable, as these authors 
consider the case D, = 0. They do, however, consider three-dimensional orientation 
distributions modelled by the quadratic closure, among others. They observed 
considerable quantitative discrepancies between closure models and their exact 
solutions. 

The excellent paper of Frattini & Fuller (1986) is of greatest relevance to the present 
discussion. Their paper reports the results of careful uniform shear flow experiments 
conducted on two different suspensions, together with parallel numerical integrations 
of closure models under the same flow conditions. It is interesting to note that they 
report their results in terms of degree of alignment of the particles 

and the (predominant) angle of orientation g* 

(5.8 a) 

(5.8b) 

rather than in terms of moment components. It is for this reason, we believe, that 
Frattini & Fuller appear to have overlooked the non-physical behaviour in the closure 
models to which we have earlier made reference. 

In our investigation of the non-physical behaviour made possible by the closure 
approximations, we performed the calculations necessary to reproduce figures 15 (a) 
and 16(a) of their paper. However, the time trace from the experiment in their figures 
is replaced by the exact solution of the microdynamical equations by the double- 
Lagrangian technique in our comparable figures 12(a) and 12(b). For the given 
conditions of Pe = 187 and aspect ratio of particles r = 6.8, it would appear that we 
have successfully reproduced their calculations; in fact, the double-Lagrangian trace in 
figures 12(a) and 12(b) is remarkably similar to the experimental result reported in 
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FIGURE 12. (a) Degree of alignment (An”/AntJ of suspension of rod-like particles of aspect ratio 
Y = 6.8 in uniform shear flow with Pe = 187; a reproduction of part of figure 15(a) of Frattini & 
Fuller (1 986). The curves are calculated using the double Lagrangian technique (--), using 
integration of direct moment evolution equations with the quadratic closure (---), and using the 
Hinch-Leal composite closure (--- -). Note the extended transient behaviour of the Hinch -Leal 
closure. (b) Dominant orientation angle of particles, r*,  relative to the direction of flow of a 
suspension of rod-like particles of aspect ratio Y = 6.8 in uniform shear flow with Pe = 187; a 
reproduction of part of figure 16(a) of Frattini & Fuller (1986). The different results are calculated 
using the double Lagrangian technique (-), using integration of direct moment evolution 
equations with the quadratic closure (---), and using the Hind-Leal composite closure (----). Note 
the overshoot in orientation angle of the Hinch--Leal closure. 

figures 15(a) and 16(a) of Frattini & Fuller, especially considering the rather broad 
dispersion in aspect ratio of their experimental material. 

Frattini & Fuller noted with interest the longer transient in the Hinch-Leal closure 
model, as well as the curious overshoot in orientation angle visible in figure 12(b). They 
explained both phenomena on the basis of an inaccurate account of Brownian effects 
at intermediate PCclet numbers. We offer here a complementary explanation : that the 
longer transient and overshoot in orientation angle are related to non-physical 
behaviour ia the closure model. This can be observed in figure 13(a-c), in which we 
plot the moment traces corresponding to figure 12(a, h) for the exact solution by the 
double-Lagrangian technique, for the pre-averaged closure model, and for the 
Hinch-Leal closure model. Upon examination, one observes that the diagonal second 
moment component integrated by the Hinch-Leal closure, (RR),,, is negative over 
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FIGURE 13. The moments (RR),,, (RR),, and (RR),, us. time multiplied by the shear rate, for 
uniform shear flow at Peclet number 187 of a suspension of rod-like particles with aspect ratio 6.8; 
(a) obtained by the double-Lagrangian technique; (b) obtained by the quadratic closure model; (c) 
obtained by the Hinch-Leal closure model. Note the non-physical negative diagonal component of 
the second moment tensor (RR) in (c). 
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the time interval 4.3 < y t  < 10. In figure 12(b) one observes that significant overshoot 
occurs in the orientation angle beginning at about y t  = 10. It would appear that during 
integration by the Hinch-Leal closure, there is a strong ‘kick’ back to (RR),, > 0 at 
i t  = 10, and that this kick results in an overshoot in orientation angle and extended 
transient. 

This leads to the rather depressing conclusion that while the Hinch-Leal closure may 
be considerably more accurate than the pre-averaged closure at predicting the gross 
features of the flows we have considered, it appears to be far more susceptible to non- 
physical behaviour, at least in uniform shear flow. One can only speculate what may 
be the implications of this sort of non-physical behaviour for the delicate numerical 
calculations that make use of closure approximations in solving flow problems for 
microstructured fluids. 

6. Conclusions 
In I we proposed a new class of computational techniques for flow problems of 

microstructured fluids. This idea is based on a Lagrangian representation of the 
evolution equation for the distribution function of the conformation of the 
microstructure ; this representation is exactly equivalent to the conventional Eulerian 
representation (the Fokker-Planck or Smoluchowski or Forward-Kolmogorov 
equation), from which it may be derived. This alternative point of view allows one to 
reformulate the equations that govern the macroscopic mechanics and microscopic 
physics of microstructured fluids. The result is a computational method in which the 
macroscopic mechanics are accounted for using a standard Eulerian technique, and the 
microscopic physics are accounted for using Lagrangian marker particles that evolve 
in a way that reflects the evolution of the associated distribution function. 

In this paper, we have pursued a realization of this idea in the form of a 
computational technique for the solution of flow problems of dilute suspensions of 
rigid, orientable particles in a Newtonian carrier fluid. The numerical technique is 
presented in full detail. We carried out example calculations for the pressure-driven 
flow of the suspension between parallel flat plates. These calculations revealed the first 
and second Newtonian regimes at low and high Peclet numbers, respectively, and also 
the shear-thinning behaviour exhibited by suspensions between these two regimes. We 
compared our results with those one can obtain using two commonly made closure 
approximations, the quadratic closure and the Hinch-Leal composite closure. For the 
suspensions of particles of moderate aspect ratio that we considered, the closure 
models tended to predict normalized flow rate deficits due to the addition of the 
particles to within, at worst, 10-30 YO. Asymptotic results indicated that the quadratic 
closure predicted shear-thinning behaviour that is too dramatic compared to that 
shown by the full equations. The Hinch-Leal closure was considerably better in this 
regard. 

During the integrations of the closure models, it was observed that non-physical 
negative diagonal components of the second moment arose during the integration of 
the Hinch-Leal closure. This was shown by way of example for a uniform shear 
calculation at moderately large PCclet number. A simple geometrical analysis of the 
moment evolution equations derived using the two closure models showed that such 
non-physical moments are a common possibility, at least during transient response. 
Hence, use of moment components to deduce dominant particle orientations is highly 
suspect when using a closure approximation. 

In the final analysis, the numerical algorithm we presented has certain advantages 
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and disadvantages when compared to other, available methods. To begin, we wish to 
note several advantages relative to brute-force integration of the associated 
Fokker-Planck equation. Our technique requires far fewer unknowns, as a 
consequence of the self-adaptive nature of the algorithm, as discussed in detail in 
Appendix B. Secondly, when the Brownian diffusivity is set to zero, there can be no 
false diffusion associated with solutions obtained by our new technique. Brute-force 
integration of the Fokker-Planck equation, however, will suffer from false diffusion 
whether the Brownian diffusivity is zero or positive. The reason is that one must 
discretize a convective derivative if one solves the Eulerian formulation of the 
Fokker-Planck equation. 

Next, we compare our technique to direct integration of moment evolution 
equations derived using a closure approximation. A disadvantage of our method is that 
the equations derived using the double-Lagrangian technique are considerably more 
complicated than moment evolution equations derived with a closure approximation. 
In addition, integration of the full equations by our new technique on the computer is 
slower than the integration of moment evolution equations; however, when the 
Brownian diffusivity is zero (as it is for larger particles), this difference is negligible. A 
disadvantage of closure models that we demonstrated was that even in our relatively 
mild test, the closure models can give results that are in error. Perhaps more 
importantly, transient behaviour of closure models can be quite different from that of 
the full equations. This may lead to instabilities in numerical calculations of closure 
models that are artifacts of the closure approximation itself. 

In addition, we demonstrated that even in uniform steady shear flow, the closure 
models can lead to non-physical negative diagonal components of the moment of the 
distribution function. Thus, if one wishes to connect observed, macroscopic non- 
Newtonian behaviour of the suspension to dynamics of particles carried by the flow, 
one cannot use the closure models we examined. The goal of a phenomenological 
model for a microstructured fluid is, after all, an assembly of the well-understood 
microscale dynamics of the local structure into a coherent picture of the macroscopic 
behaviour of the material. We have demonstrated that while closure approximations 
can give results that are not too terrible in a realistic flow, the connection between 
microscale and macroscale behaviour is at best obscured by their use. 

Appendix A. An alternative discretization of the coordinate map that fails 
Owing to the fact that the coordinate map is a map of the sphere of orientations, it 

would seem natural to solve for R ( t ;  R,) in terms of spherical polar coordinates. In 
other words, one could attempt to find the map 

(go ,  0,) ( 4 t ;  no, 0017 0( t ;  0,>), 

where (n, 0) are the modified spherical polar coordinates defined in figure 1, say. This 
approach leads to evolution equations for n(t: no, 0,) and 0( t ;  no, O,), as follows. First, 
we have the Cartesian components of the director 

cos 0 cos cr 

and the identity R = kcos Oe, + be,. 
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f * ( t ;n , ,Bo)  a(n,B) COSB -l 

f * ( O ;  no, 0,) = [i(nu.H,) x] 
The angles (no, 0,) serve as coordinates in the reference configuration, while the angles 
(a, 0) are coordinates in the deformed configuration. We have used the notation 

a(a,e) - aa (38 
qa,, e,) - an, ae, ae, aa,. 

c3cT a0 

By using the Lagrangian representation for the distribution function (A l), the 
Brownian term may be reformulated as discussed at length in I. This procedure yields 
a closed set of evolution equations for the coordinate map from reference to deformed 
configurations of the suspended phase written here for the case of unidirectional flow: 

The coordinate map we seek is therefore the solution to (A 2) ;  however, the 
numerical solution of these equations is fraught with difficulty, owing to the singularity 
in the coordinate system at the poles (6' = +in). In particular, the l/cos 0 factor in the 
Brownian term of (A 2 a )  becomes problematic as one approaches a pole of the sphere 
of orientations. Moreover, this factor multiplies the most important source of 
nonlinearity in the system (A 2). The consequence of these observations is that, as one 
refines the discretization of the system, one is restricted to very small time steps 
required for stable integration. Clearly the source of the restriction is but an artifact of 
the coordinate system. Therefore, we use Cartesian coordinates for orientation space, 
as described. 

Appendix B. Tests of the numerical technique 
The numerical method for integration of the orientation distribution was tested by 

computation of uniform shear flow. In particular, we were interested in what is the 
required discretization of the sphere of orientations, depending on the Brownian 
diffusivity and on the shear rate. 

As a consequence of the special nature of the flow, it is possible to rescale time by 
the shear rate v. Thus there is only a single parameter characterizing the solution, 
?/OR = Pe (the PCclet number). For various values of Pe we computed the orientation 
dynamics of a single ensemble of particles by the new technique. Then we compared 
the particle contribution to the shear stress, and the first and second normal stress 
differences. These time traces were compared for various discretizations of the sphere 
of orientations (3.2). We found no visible improvement in the solution was obtained 
when j,,, exceeded the recommended values shown in table 1. 

In practice, when computing the inhomogeneous flows that we discuss in the main 
body of the paper, we found the following results concerning execution time on a 
Convex 240 supercomputer. Almost all the execution time is spent updating the 
orientations of particles. In scalar execution mode, for a single predictor-corrector step 
to be computed for a single ensemble of discretizationj,,, = 20 requires approximately 
350 ms of CPU time. Vectorization improved this result to 150 ms of CPU time/time- 
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Number of 
Pe j,,,,, unknowns At 

100 15 256 0.00625 
10 15 256 0.0125 
1 20 441 0.00125 

TABLE 1. Recommended discretization and time-step sizes 

step/ensemble. Finally, the code was found to profit from parallelization when there 
are many ensembles, as each ensemble can be updated simultaneously and 
independently by a different, dedicated processor. The parallel efficiency (speed- 
up/nurnber of processors) was 68 %. Thus a single predictor-corrector step for a single 
ensemble withj,,, = 20 required approximately 50 ms of clock time on a 4 processor 
machine. For j,,, = 15, these times are reduced by 50 %. 

The recommended discretizations we report should be compared with the 
discretizations required by Kamal & Mute1 (1989) in a recent numerical solution of the 
Fokker--Planck equation for the distribution function in a suspension of rigid particles 
under uniform shear. They made use of finite differences and a cyclic tridiagonal matrix 
algorithm to solve for the distribution function using 7745 unknowns for a single 
ensemble. No information concerning time-step size or execution time was given in 
their paper. 

R E F E R E N C E S  

ADVANI, S. G. & TUCKER, C. L. 1987 The use of tensors to describe and predict fiber orientation in 
short fiber composites. J .  Rheol. 31, 751-784. 

ADVANI, S. G. & 'rUCKER, C. L. 1990 Closure approximations for three-dimensional structure 
tensors. J .  Rheol. 34, 367-386. 

ALTAN, M. C., ADVAN], S. G., G U ~ R I ,  S. 1 .  & PIPES, R. B. 1989 On the description of the 
orientation state for fiber suspensions in homogeneous flows. J .  Rheol. 33, 1129-1 155. 

BIRD, R. B., HASSAGER, O., ARMSTRONG, R. 6. & CURTIS, C:. F. 1987 Dynamics of Polymeric 
Liquids; Vol. 2, Kinetic Theory. John Wiley and Sons. 

BRETHERTON, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J .  
Fluid Mech. 14, 284-304. 

DINGMAN, S. E. 1992 Three dimensional simulation of fluid particle interactions using the boundary 
element method. PhD dissertation, University of New Mexico. 

EL-KAREH, A. & LEAL, L. G. 1989 Existence of solutions for all Deborah numbers for a non- 
Newtonian model modified to include diffusion. J.  NowNewtonian Fluid Mech. 33, 257-287. 

FRATTINI, P. L. & FULLER, G. G. 1986 Rheo-optical studies of the effect of weak Brownian rotations 
in sheared suspensions. J .  Fluid Mech. 168, 119-150. 

GIESEKUS, H. 1962 Elasto-viskose Fliissigkeiten, fur die in stationaren Schichtstromungen samtliche 
Normalspannungskoinponenten verschieden gtrol3 sind. Rheologica Acta 2, 5&62. 

HINCH, E. J. & LEAL, L. G. 1973 Time-dependent shear flows of a suspension of particles with weak 
Brownian rotations. J. Fluid Mech. 57. 753-767. 

HINCH, E. J. & LEAL, L. G. 1975 Constitutive equations in suspension mechanics. Part 1 .  General 
Formulation. J .  Fluid Mech. 71, 481495. 

HINCH, E. J. & LEAL, L. G. 1976 Constitutive equations in suspension mechanics. Part 2. 
Approximate forms for a suspension of rigid particles affected by Brownian rotations. J .  Fluid 
Mech. 76, 187-208. 

JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a fluid. Proc. R .  SOC. Lond. A 

KAMAL, M. R. & MUTEL, A. T. 1989 The prediction of flow and orientation behavior of short fiber 
102, 161-179. 

reinforced melts in simple flow systems. Polymer Composites 10, 337-343. 



204 A .  J .  Szeri and L. G. Leal 

Kuzuu, N. Y. & DOI, M. 1980 Nonlinear viscosity of concentrated solutions of rod-like polymers. 

LARSON, R. G. 1988 Constitutive Equations f o r  Polymer Melts and Solutions. Butterworth. 
LEAL, L. G. & HINCH, E. J. 1971 The effect of weak Brownian rotations on particles in shear flow. 

J .  Fluid Mech. 46, 685-703. 
LEAL, L. G. & HINCH, E. J. 1972 The rheology of a suspension of nearly spherical particles subject 

to Brownian rotations. J .  Fluid Mech. 55, 145-765. 
LIPSCOMB, G. G., DENN, M. M., HUR, D. U. & BOGER, D. V. 1988 The flow of fiber suspensions in 

complex geometries. J .  Non-Newtonian Fluid Mech. 26, 297-325. 
OKAGAWA, A., Cox, R. G. & MASON, S. G. 1973 The kinetics of flowing dispersions. VI. Transient 

orientation and rheological phenomena of rods and discs in shear flow. J .  Colloid Interface Sci. 

SZERI, A. J. & LEAL, L. G. 1992 A new computational method for the solution of flow problems of 
microstructured fluids. Part 1. Theory. J .  Fluid Mech. 242, 549-576 (referred to herein as I). 

SZERI, A. J. & LEAL, L. G. 1993 Microstructure suspended in three-dimensional flows. J .  Fluid 
Mech. 250, 143-167. 

SZERI, A. J., MILLIKEN, W. & LEAL, L. G. 1992 Rigid particles suspended in time-dependent flows: 
irregular versus regular motion, disorder versus order. J .  Fluid Mech. 237, 33-56. 

SZERI, A. J., WIGGINS, S. & LLAL, L. G. 1991 On the dynamics of suspended microstructure in 
unsteady, spatially inhomogeneous, two-dimensional fluid flows. J.  Fluid Mech. 228, 207-241. 

Polymer J .  12, 883-890. 

45, 303-329. 


